
SUMMARY OF A DISCUSSION ON IDEAS FOR A FIRST
POST MORTEM PROTOTYPE
Date: 29th March 2004
Present: Steven Page, Ronny, Billen, Jorg Wenninger, Mike Lamont, Hervé Milcent,
Bruno Dupuy, Franck Di Maio, Robin Lauckner

Purpose
This meeting was to try and firm up a proposal from Mike to build a prototype Post
Mortem system.

Scope
Robin was concerned about meeting the deadline to specify the PM client API at the end
of June. Mike wanted to check out the SDDS protocol and tools in use at Argonne, DESY
and RHIC. Hervé wanted to clarify details of the PM system in order to complete QPS
system tests in the next months.

Hardware Commissioning
Robin reviewed the basic requirements for Hardware Commissioning. There will be 3
major systems supplying PM information after a Powering Abort: QPS, Power
Converters and Powering Interlocks. The basic nature and structure of the data they will
provide has been described. First ideas on the analysis of the data have also been
collected.
Jorg commented that the 100 Hz data capture in the PO FGCs will not meet the
requirements for capturing transients from Warm Magnets.

Data Gathering
Mike proposed that the first PM prototype should explore the usage of SDDS as the data
representation and build the Post Mortem Event into a generic file directory. The data
collection chain could be a standard network file system, avoiding special developments.
Hervé pointed out that it is essential to ensure that data are secured onto disk. Not only
must the information be written but a check that the data is correct must also be applied.
He urged that this responsibility should not be left with the clients.
Franck commented that NFS implementation under Lynx OS has been problematic. It is
necessary to look into the reliability issues.
Mike suggested that after the data is collected some post-processing may be required to
pull in complementary data such as alarms, to build a description of what data is in the
event and perhaps to migrate the information to a PM database. While autonomous data
scanning would perhaps act on the SDDS data more generic navigation and browsing
may be implemented on the RDBMS.

SDDS
Mike ran through a presentation on SDDS that had been given by Michael Borland from
the APS. He pointed out that apart from defining the data format SDDS is supported by
data analysis tools. These are a set of simple filters designed to be used as pipes between
files.
Hervé insisted that engineers will want to use the analysis tools from their offices. Steven
and Mike said that there was support in various languages and across different platforms
and referred to a paper from R. Soliday of APL.
Mike pointed out that the SDDS tools seem appropriate for our domain. Further evidence
of this is that they are used at RHIC for PM.
Franck observed that from his experience such tools are used as a justification for
adopting data formats but later on they are not used and you end up with just the data
representation.
Steven said that the advantage of SDDS was the associated tools. XML is an alternative
but doesn’t give you much. SDDS appears to offer PM and Logging support “for free”.
Ronny emphasized that it is the end use of the data that should define its format.

Goals of a Prototype
Robin enumerated the possible goals we could set for a prototype. These went through
data gathering, archival, analysis and correlation with alarms and logging. He emphasized
that his main concerns are the definition of the client API and the management of data
collection in the concurrent environment of the LHC Hardware commissioning.
Hervé pointed out that the QPS has a Test Mode which supplies realistic PM data.

Conclusion
Mike and Robin should put together a more precise proposal.

AB-CO-TC 11 March, 2004 Post Mortem, R. J. Lauckner 1

AB-CO-TC 11 March, 2004 Post Mortem, R. J. Lauckner 2

Power Converters

TCP/IP communication services

T T T T

OPERATOR
CONSOLES

OPERATOR
CONSOLES

FIXED
DISPLAYS

C
E

R
N

 G
IG

A
B

IT
 E

TH
E

R
N

E
T

 T
E

C
H

N
IC

A
L

 N
E

TW
O

R
K

FILE SERVERS

WorldFIP SEGMENT
(1, 2.5 MBits/sec)

TCP/IP communication services

…
RFE RFE RFE

T

APPLICATION SERVERS

CFW

CSACSF

CWO

RFE
Circular Buffer running at 100 Hz
Record: UTC, IREF, IA, IB, VREF, VOUT
Status: STATE, WARNING, FAULTS
Length to be specified – 20 seconds?
All buffers streamed at 50 Hz to UPS protected CFW

PUBLIC
ETHERNET
NETWORK

CTGTIMING GENERATION

WORLDFIP
Front Ends

CFW
256 MB?
30 Channels
10’ UPS

AB-CO-TC 11 March, 2004 Post Mortem, R. J. Lauckner 3

QPS

TCP/IP communication services

PUBLIC
ETHERNET
NETWORK

TIMING GENERATION

T T T T

OPERATOR
CONSOLES

OPERATOR
CONSOLES

FIXED
DISPLAYS

C
E

R
N

 G
IG

A
B

IT
 E

TH
E

R
N

E
T

 T
E

C
H

N
IC

A
L

 N
E

TW
O

R
K

FILE SERVERS SCADA SERVERS

WORLDFIP
Front Ends

WorldFIP SEGMENT
(1, 2.5 MBits/sec)

TCP/IP communication services

DQAMCDQAMG DQAMG DQAMS

T

Sector 7-8:
- 203 AMC
- 26 AMG
- 29 AMS
- 3 DQGTWs
- 2 PVSS data
servers

CFW

CTG

CSF

DQAMG
Record: UTC long, Nrec int, 40 doubles, 1 int
2500 records in circular buffer
Internal trigger
10’ UPS DQAMC type A/B

Record: UTC long, Nrec int, 7/8 doubles, 1 int
2500 records in circular buffer
Internal trigger
10’ UPS

CFW
WFIP guarantees data
evacuated from crates < 10’
UPS 10’

CSS

CWO

…

Global Protection Energy Extraction Main Magnets

AB-CO-TC 11 March, 2004 Post Mortem, R. J. Lauckner 4

Powering Interlocks

TCP/IP communication services

OPERATOR
CONSOLES

OPERATOR
CONSOLES

C
E

R
N

 G
IG

A
B

IT
 E

TH
E

R
N

E
T

 T
E

C
H

N
IC

A
L

 N
E

TW
O

R
K

FILE SERVERSSCADA SERVER

PLCs

TCP/IP communication services

PLCs

Powering

Interlock

Controllers

Warm

Magnet

Interlock

Controllers

CSS

CWO

CFP

CIP
Record: UTC, 164 I/O Booleans
1000 records in circular buffer
Generates Start / Stop Powering PM Trigger
10’ UPS

Powering CSS
Reflects 36 PIC buffers to
operator
Receives (software) conditions:
Cryo OK, QPS ready, Post
Mortem ready

PUBLIC
ETHERNET
NETWORK

FIXED
DISPLAYS

TCP/IP communication services

AB-CO-TC 11 March, 2004 Post Mortem, R. J. Lauckner 5

Analysis
1. Verify that the Machine Protection Systems (MPS)

carried out all required actions
2. Identify the magnet that quenched
3. Identify the cause of the quench
4. Check that the QPS and Energy Extraction Systems

performed correctly and that the circuit behaviour
was within the expected range.

– Inspect characteristics of PM transients
– Verify that there was no loss of redundancy

5. Check that other actions were performed correctly
and with normal behaviour

AB-CO-TC 11 March, 2004 Post Mortem, R. J. Lauckner 6

Goals of Prototype
• Develop PM Client Interface for June
• Define data representation
• Investigate concurrency requirements

– Triggering
– Tagging data

• Develop archiving strategy
• Link to reference database
• Link to logging data
• Link to LASER

Michael Borland Advanced Photon Source

Using SDDS for Accelerator
Commissioning and Operation

Michael Borland
Operations Analysis Group
Advanced Photon Source

www.aps.anl.gov/asd/oag/oaghome.shtml

Michael Borland Advanced Photon Sourcewww.aps.anl.gov/asd/oag/oaghome.shtml

Introduction

1 High-level applications at APS are based on
- A common self-describing file protocol.

- A toolkit of commandline programs that manipulate such files.

- Tcl/Tk scripts to manage these programs and create GUIs.

1 The protocol and programs are called "SDDS",
for Self-Describing Data Sets

Michael Borland Advanced Photon Sourcewww.aps.anl.gov/asd/oag/oaghome.shtml

Outline of Presentation

1 Concept and implementation

1 What is self-describing data?

1 SDDS file protocol and applications

1 SDDS toolkit programs

1 Advantages and problems

1 Who uses SDDS?

1 Applications

1 Demos

Michael Borland Advanced Photon Sourcewww.aps.anl.gov/asd/oag/oaghome.shtml

Concept

1 A generic data processing algorithm:
Output = On ... O2 O1 Input

1 Write programs that act as operators.

1 Define a generic data-containing object for the
operand.

1 Applying sequences of programs creates
arbitrarily complex transformations.

1 Programs are re-used in many unrelated
applications.

Michael Borland Advanced Photon Sourcewww.aps.anl.gov/asd/oag/oaghome.shtml

Examples of the Concept

1 Simple lifetime measurement:
acquireData | compute(Log) | fitPolynomial | display

1 Robust lifetime measurement:
acquireData | compute(Log) | fitPolynomial
| removeOutliers | fitPolynomial | display

1 Beam history analysis:
acquireData | FFT | smooth | peakfind | collect(ByBPM)
| display

1 Find the noisiest power supply:
acquireData | compute(Stats) | collect(BySupply) | sort
| display

Michael Borland Advanced Photon Sourcewww.aps.anl.gov/asd/oag/oaghome.shtml

Implementation

1 Consistently used a simple, common self-describing file
protocol for data.

1 Wrote generic, commandline programs using these files

- Data collection

- Data analysis

- Graphics

- Process control

1 Used Tcl/Tk script language to

- Record/create sequences

- Create GUIs

Michael Borland Advanced Photon Sourcewww.aps.anl.gov/asd/oag/oaghome.shtml

What is Self-Describing Data?

1 Identified and accessed by name only

1 Units, data type, and other meta-data are
included.

1 Advantages:
- Truly generic programs possible

- Programs can verify and adapt to file contents

- Augment file contents without breaking applications

- Self-documenting

- Integrates simulation, control system, and other data sources

Michael Borland Advanced Photon Sourcewww.aps.anl.gov/asd/oag/oaghome.shtml

SDDS File Protocol

SDDS Version ID

0 or more parameter defs

0 or more column defs

0 or more array defs

Instance #1 of parameters

Instance #1 of arrays

Instance #1 of columns

Instance #2 of parameters

Instance #2 of arrays

Instance #2 of columns

Header: defines a data
structure

Page 1: an instance
of the structure

Page 2: an instance
of the structure

Michael Borland Advanced Photon Sourcewww.aps.anl.gov/asd/oag/oaghome.shtml

Examples of Uses of SDDS Files

1 Back-up and restore files (BURT)

1 Archival data from machine monitoring

1 Alarm history data

1 Magnet conditioning instructions

1 Waveforms from scopes and network analyzers

1 Beam profile and images

1 Feedback matrices

1 Orbit correction configuration data

1 Beam position monitor status database

Michael Borland Advanced Photon Sourcewww.aps.anl.gov/asd/oag/oaghome.shtml

SDDS Toolkit Programs

1 SDDS is used by a group of about 70 generic
programs

1 Most of these "SDDS Toolkit" programs both
read and write SDDS files, so

- They can be used sequentially

- Even simple tools become useful and productive

1 About 20 EPICS-specific programs use SDDS

1 Programs are commandline driven and hence
scriptable

Michael Borland Advanced Photon Sourcewww.aps.anl.gov/asd/oag/oaghome.shtml

SDDS Toolkit Capabilities

1 Device-independent graphics

1 Equation evaluation

1 Data filtering, sorting, collection, and cross-referencing

1 Statistics, correlation analysis, and histograms

1 Polynomial, exponential, and gaussian fitting

1 Outlier analysis and removal

1 Matrix operations

1 FFT and digital filtering

1 Derivatives and integrals

1 Conversion to/from text and other formats

Michael Borland Advanced Photon Sourcewww.aps.anl.gov/asd/oag/oaghome.shtml

SDDS/EPICS Toolkit Capabilities

1 Time-series data collection and statistics collection*

1 Glitch/trigger initiated data collection*

1 Synchronized data collection

1 Alarm data collection*

1 Experiment execution**

1 Snapshot save, restore, and ramp**

1 Feedforward, feedback**, and optimization**

*Used at APS for continuous archiving.
**Used at APS for routine operations.

Michael Borland Advanced Photon Sourcewww.aps.anl.gov/asd/oag/oaghome.shtml

Advantages of SDDS

1 Tools for on-the-fly experiments, data analysis, etc.

1 Permits very rapid testing, implementation of ideas

1 Gives "muscle" to Tcl/Tk scripts

1 Simplifies the development of new applications

1 New programs have an amplified and often unexpected
payoff

1 Analysis capabilities comparable to MATLAB or IDL, but
SDDS is free

1 Open source

Michael Borland Advanced Photon Sourcewww.aps.anl.gov/asd/oag/oaghome.shtml

Problems/Complaints

1 SDDS commandline tools are hard to use for
newcomers and occassional users.

1 SDDS files are not random-access files. A page
is read into memory, following which the
application requests copies of needed data.

1 Does not provide cross-platform reading of binary
files. (Solved in next release.)

1 Slower execution than custom code.

Michael Borland Advanced Photon Sourcewww.aps.anl.gov/asd/oag/oaghome.shtml

Who Uses SDDS?

1 APS depends on SDDS for accelerator operation,
archiving, data analysis, and simulation.

1 IPNS uses SDDS for archiving, analysis, and display.

1 RHIC uses SDDS files throughout the control system
but doesn't use SDDS tools at present.

1 BESSY II uses SDDS files and tools for data archiving,
automated processing, and some applications.

1 DESY is adopting SDDS files for their data archives.

1 SNS has some limited experimental use of SDDS.

1 Accelerator simulators (ANL, DESY, LBL, SLAC, ...)

Michael Borland Advanced Photon Sourcewww.aps.anl.gov/asd/oag/oaghome.shtml

Selected Accelerator Physics Activities
Performed with SDDS

1 Magnetic measurement data analysis

1 Magnet conditioning and configuration*

1 Model-independent steering*

1 Obit/trajectory response matrix measurement*

1 Orbit correction*

1 Insertion device beamline steering*

1 Tune and chromaticity measurement*

1 Beta-function and dispersion measurement and correction*

*GUI application

Michael Borland Advanced Photon Sourcewww.aps.anl.gov/asd/oag/oaghome.shtml

Selected Accelerator Physics Activities
Performed with SDDS

1 Dynamic aperture measurement*

1 Energy aperture measurement*

1 Physical aperture search

1 BPM-to-quadrupole offset measurements with beam*

1 BPM intensity dependence measurement and
compensation*

1 Automated BPM timing scans and timing setup.*

Michael Borland Advanced Photon Sourcewww.aps.anl.gov/asd/oag/oaghome.shtml

Selected Accelerator Physics Activities
Performed with SDDS

1 Transport line emittance measurement and beta-function
matching*

1 Bunch length measurement using rf zero-phasing*

1 Automated processing of beam spot images from SASE FEL
experiments*

THAP031

PROLIFERATION OF SDDS SUPPORT FOR VARIOUS
PLATFORMS AND LANGUAGES

R. Soliday, APS/ANL, Argonne, IL 60439, USA

Abstract

Since Self-Describing Data Sets (SDDS) were first
introduced, the source code has been ported to many
different operating systems and various languages.
SDDS is now available in C, Tcl, Java, Fortran, and
Python. All of these versions are supported on Solaris,
Linux, and Windows. The C version of SDDS is also
supported on VxWorks. With the recent addition of
the Java port, SDDS can now be deployed on virtually
any operating system. Due to this proliferation, SDDS
files serve to link not only a collection of C programs,
but programs and scripts in many languages on
different operating systems. The platform-independent
binary feature of SDDS also facilitates portability
among operating systems. This paper presents an
overview of various benefits of SDDS platform
interoperability.

1 VARIOUS PORTS

1.1 Versions of C

Originally SDDS programs [1] were written to store
and manipulate accelerator data at the Advanced
Photon Source (APS). Since that time SDDS usage
has spread to many additional facilities with different
needs and different hardware. This was accomplished
by undertaking the effort to port SDDS programs to
additional hardware platforms and to additional
programming languages. With the addition of these
various ports we have been able to keep a generic
source code base that compiles on all the supported
operating systems. This has helped to facilitate
upgrades because changes in the source code affect all
of the SDDS versions.

The SDDS Toolkit, which consists of over 100
applications, was originally written in C on Solaris. A
Tcl/Tk extension was also written for Solaris. In order
to accommodate other users, the SDDS Toolkit was
first ported to the GNU C compiler on Red Hat Linux
because it was deemed to be the easiest place to start.
This version of the SDDS Toolkit is now available in
the form of a binary Red Hat package. It was then
ported to Visual C++ and the free Borland C++ Builder
on Windows. These versions are now available as
self-installing executables. The APS is now also using
a VxWorks port of SDDS so that the Experimental
Physics and Industrial Control System (EPICS)

input/output controllers (IOCs) can read and write
SDDS files.

1.2 Wrappers and Extensions

Using a FORTRAN wrapper for the SDDS C
libraries, it has been possible to incorporate SDDS
function calls in FORTRAN programs. A similar
technique was used with the Python programming
language. Both of these ports require that the SDDS C
libraries also be built. This was done because there
was a desire to avoid having to maintain multiple
source code bases.

1.3 Java

Most recently SDDS has been ported to Java. In
order to take full advantage of Java’s cross-platform
capabilities it was decided to avoid using the existing
SDDS C libraries. This required writing the Java
SDDS port from scratch. This code has evolved over
time and is now totally SDDS compatible with the
exception of SDDS array types. Benefits of this port
include the fact that any Java SDDS application is
automatically cross platform and the ability to extend
existing Java programs so that they are SDDS
compatible.

2 APPLICATIONS

2.1 SDDS Toolkit and OAG Tcl/Tk Software

Various SDDS applications are distributed through
the Operation Analysis Group (OAG) web site1.
According to our statistics 40% of the downloads are
for precompiled Windows software, 20% for
precompiled Linux software, and 40% for source code
which can be compiled on any of our supported
platforms. These applications include the SDDS
Toolkit, which is used for postprocessing of the
databases [2]. Also included are SDDS EPICS
software that can be used to monitor and manipulate
process variables (PVs) in the IOCs. There are also
various accelerator modeling and simulation programs
using SDDS databases.

The original versions of most of the SDDS programs
have been refined at the APS on Solaris operating
systems. The operators at the APS use C and Tcl/Tk

1 http://www.aps.anl.gov/asd/oag/oaghome.shtml

Figure 1: Example of an SDDS file editor written in Java and Tcl/Tk.

SDDS applications extensively. Over time
enhancements have been added to existing programs
and new programs were written to add further
functionality. The usual setup of a program used in the
APS control room consists of a Tcl/Tk graphical user
interface (GUI) that directly interfaces with SDDS files
and PVs or a Tcl/Tk GUI that executes various SDDS
C programs. These programs include the Procedure
Execution Manager (PEM), which has been used to
automate accelerator operations [3,4].

2.2 VxWorks Applications

The core SDDS library routines that have also been
ported to VxWorks are now being used at the APS to
load and store configuration data in some of the IOCs,
as well as being used to write video images to disk.
Another more limited use of SDDS in the IOCs has
been to run some of the SDDS Toolkit applications. If
demand for this increases further, SDDS Toolkit
applications will be ported to VxWorks.

2.3 Accelerator Simulators

As a result of requests from other institutions and
the prospect of using faster and less expensive
hardware, these programs have been ported to both

Windows and Linux. Beyond simply porting these
programs, they are also now available in precompiled
binaries. This makes deployment of these programs
much easier for most users. Currently these ported
versions are being used at the APS to run accelerator
simulations on very fast computers that are relatively
inexpensive. Future plans include investing in more
x86 processors to run large-scale simulations.

In addition to porting to other platforms, there has
been work done to port to additional languages. A
FORTRAN wrapper is used to add SDDS functionality
to GENESIS [5], a time-dependent free-electron laser
(FEL) simulation code written by Sven Reiche. The
code was modified so that the output files can be
plotted with existing SDDS plotting programs. Also
the output from elegant, an accelerator simulation
program, can now be used as input to GENESIS. This
work has helped to achieve start-to-end accelerator
simulations [6].

2.4 Java

Most recently SDDS has been ported to Java. Using
this new language, a few new programs have already
been created. A cross-platform SDDS file editor (see
Figure 1) was written loosely based on a Tcl/Tk SDDS

editor. Another program written in Java is a three-
dimensional plotting program (see Figure 2). This
program can be used to plot SDDS data as a surface
plot or a scatter plot. New SDDS applications can be
relatively easy to create in Java from scratch or by
integrating SDDS functionality with a preexisting
program. One obvious advantage to writing programs
in Java is that the programs will run on operating
systems that are not supported by previous SDDS
ports, such as Macintosh.

Figure 2: Three-dimensional plot using Java SDDS 3D
plotter.

3 BENEFITS

3.1 Cross Platform

One benefit to having cross-platform database
software is that there is no need to change the existing
computer infrastructure to use SDDS software. It is
not even required that all the computers at one site be
of the same type. The SDDS software has binary
interoperability, which allows the programs the ability
to read SDDS files that were created on different
operating systems.

3.2 Easy Deployment

Now that there are binary SDDS programs available
on Windows and Linux, SDDS is much easier to
deploy since the source code does not have to be
recompiled. This has brought SDDS software up to
the standards of many commercial packages that
people have become accustomed to using. The
programs are packaged using InstallShield on
Windows and RedHat Package Manager on Linux.
For the Solaris operating system it is still necessary to

compile the source code because this is the standard
distribution method for Solaris.

3.3 Stable Software

One unexpected advantage of porting SDDS to
various operating systems and different C compilers
was the ability to detect and remove problems in the
source code. Each C compiler has a different set of
compiler warnings that we used to refine the SDDS
software. With these changes many possible problems
have been averted before they became apparent. Using
this technique we can check changes to the source code
prior to public release.

Automated test scripts written for Solaris, Linux and
Windows also test these programs. These scripts run
each program through a series of tests using various
options. More detailed debugging is accomplished on
Solaris by using Purify and Quantify from Rational
Software.

ACKNOWLEDGMENT
Work is supported by U.S. Department of Energy,

Office of Basic Energy Sciences, under Contract No.
W-31-109-ENG-38.

REFERENCES
[1] M. Borland and L. Emery, “The Self-Describing

Data Sets File Protocol and Program Toolkit,”
Proc. 1995 ICALEPCS, May 1-5, 1995, Dallas,
Texas, pp. 653-662 (1996).

[2] M. Borland, “User’s Guide for SDDS Toolkit,”
http://www.aps.anl.gov/asd/oag/manuals/
SDDStoolkit/SDDStoolkit.html.

[3] R. Soliday et al., “Automated Operation of the
APS Linac using the Procedure Execution
Manager,” Proc. International Linac Conference
(LINAC2000), August 21-25, 2000, Monterey,
California, pp. 524-526 (2000).

[4] S. Pasky et al., “Efficient and Effective Operation
of the APS Linac,” Proc. Workshop on
Accelerator Operation (WAO2001), January 28 –
February 2, 2001, Villars sur Ollon, Switzerland,
to be published.

[5] S. Reiche, Nucl. Instr. Meth. A 429, p. 243 (1999).
[6] M. Borland et al., “Start-to-End Jitter Simulations

of the Linac Coherent Light Source,” Proc. 2001
Particle Accelerator Conference (PAC2001), June
18-22, 2001, Chicago, Illinois, to be published.

Hi,
Possible idea for prototyping the data collection aspect of the Post
Mortem system:

- equipment groups are collecting their front-end PM buffers on the
gateways following PM event
- from the the gateway write buffers to file system (would imagine a
symbolic link to "current PM" directory structure - would clock this at
the top level)
- Format files in Self Describing Data Sets (SDDS) format (see links
below) (XML as another option)
- post-processing of data sets could then take place as necessary
(including the possibility of writing some stuff to Oracle)

SDDS was developed at Argonne for the APS, has come through several
iterations. Forms the basis of their control system (settings,
measurements etc. - not suggesting that). Lots of supporting tools.
Used by RHIC in their post mortem system (see below).

Stephen Page has had a very quick look - his comments attached. (Will
discuss more with him over a beer or two)

Cheers
Mike

http://www.aps.anl.gov/asd/oag/manuals/SDDStoolkit/SDDStoolkit.html

For an example of the format see: looks very intuative.

http://www.aps.anl.gov/asd/oag/manuals/SDDStoolkit/node3.html

RHIC...
http://arxiv.org/ftp/physics/papers/0111/0111159.pdf

Stephen wrote:

I had a very quick look at the SDDS stuff. It looks interesting and
seems a potential option for PM logging.

One could envision doing a similar thing with XML, so while I was
reading
the SDDS docs I was trying to compare it to what could be done with
XML.

Advantages of SDDS seem to be (at first glance):

1. Someone has used it before for a similar application and thought
about which fields are needed. If we used XML, we would have to define
a set of standard fields (e.g. name, type, units, description) and the
structure of the files.

2. Supporting library exists to write the files(?). Not quite sure
about this one, but I think I saw a few references to a library. XML
libraries do exist (such as expat), but they are generic and further
code would need to be written to provide for our specific needs.

http://www.aps.anl.gov/asd/oag/manuals/SDDStoolkit/SDDStoolkit.html
http://www.aps.anl.gov/asd/oag/manuals/SDDStoolkit/node3.html
http://arxiv.org/ftp/physics/papers/0111/0111159.pdf

3. Analysis tools are provided. SDDS supplies tools to perform some
analysis which may or may not be useful for us. Hopefully though, this
would imply that tools / libraries to parse generated SDDS files are
provided as part of the toolkit.

	SUMMARY OF A DISCUSSION ON IDEAS FOR A FIRST POST MORTEM PROTOTYPE
	Purpose
	Scope
	Hardware Commissioning
	Data Gathering
	SDDS
	Goals of a Prototype
	Conclusion

	f4.pdf
	Power Converters
	QPS
	Powering Interlocks
	Analysis
	Goals of Prototype

	f4.pdf
	Power Converters
	QPS
	Powering Interlocks
	Analysis
	Goals of Prototype

