

Fermilab
Accelerator Division/LHC Accelerator-Fermilab Software (LAFS)

18 September 2006
16:57

SEQUENCED DATA ACQUISITION FOR THE

LARGE HADRON COLLIDER

DRAFT

Timofei Bolshakov
Suzanne Gysin

Elliott McCrory
Dennis Nicklaus

Abstract

This document describes Sequenced Data Acquisition (SDA). Based on SDA developed

for Fermilab, we propose a possible implementation of SDA for the LHC.

Revision History

Version Date Comments

0 18 Sept 2006 First Draft, written at Fermilab.

SDA for LHC Draft Page 2 of 16

SDA II Proposal for LHC Version 0.doc Last printed 9/18/2006 4:57:00 PM

Table of Contents

1. INTRODUCTION ..3

2. DESCRIPTION OF SDA...3

3. ADVANTAGES OF SDA..5

3.1 ANALYSIS OF OVERALL ACCELERATOR PERFORMANCE 5

3.2 ERROR/FAILURE ANALYSIS OF THE ACCELERATOR.................................... 5

3.3 COMPUTATIONAL/SUMMARY TABLES... 6

4. SDA COMPONENTS ..8

5. ADAPTING SDA FOR LHC ...10

5.1 DESIGN ISSUES AND CHOICES .. 10

5.1.1 Suggested Design Choices...10

5.1.2 Design Considerations ..10

5.2 “TO DO” LIST FOR SDA.. 11

6. SUMMARY..11

REFERENCES...12

GLOSSARY ..12

APPENDIX 1, CONTACT INFORMATION...13

APPENDIX 2, SDA DATA API ...13

APPENDIX 3, XML SCHEMA ...15

Figures

Figure 1. A Screen Shot of the Super Table .. 6

Figure 2. Screen shot of the SDA Structure Editor. .. 9

Figure 3. Screen shot of the SDA Viewer .. 9

SDA for LHC Draft Page 3 of 16

SDA II Proposal for LHC Version 0.doc Last printed 9/18/2006 4:57:00 PM

1. INTRODUCTION

Sequenced Data Acquisition (SDA) is a special purpose data logging system that has

been developed at Fermilab. This system collects and stores data according to the stages of

the accelerator cycles or modes, instead of using wall clock time. It organizes and presents

the data so people and programs can read and search it easily. Once the data are organized,

presented, and distributed, it becomes a valuable tool to analyze the accelerator's

performance or to track down errors and inefficiencies. In short, SDA organizes the accelerator
data to facilitate analysis.

More specifically, SDA defines a temporal abstraction for acquiring and storing data

about a repeated process, like a collider store. This abstraction encapsulates the progression

of time through the process by breaking it down into a specific, repeated series of stages or

modes. Data are collected within each of these stages and are stored in a database indexed

by the stages. The stages have descriptive names, in addition to a numerical index,
facilitating understanding of and communication about the process.

The heart of SDA is the data acquisition and its indexed database. Additionally, SDA

provides a suite of application programs, scripts and Application Programming Interfaces

(API). These components, which use the collected data and monitor the data flow, are:

� SDA Viewer: a web-based application that allows people to browse SDA data.

� SDA Editor: a web-based application for creating the data acquisition rules

� Store Checker: an application for checking the data within SDA and sending out

email notifications if values exceed limits

� Super Table: a spreadsheet that has a row for each instance of the process and

contains the most popular data. The table is available in many formats: Excel,

HTML, AIDA and ASCII Comma Separated Values formats.

� API: Application Programing Interface to access SDA data programmatically for
creating plots, doing special analyses, etc.

SDA is intended to be a general tool, applicable to any repeated process. However, in

this document we explore the possibility of applying SDA to the LHC by considering the

specific functionality that would be needed to record the progression of the LHC through the
modes and cycles that create and maintain colliding beams at the experiments. The ideas

presented in this document are intended to serve as a basis for discussion, with a goal of
developing a fully functional SDA for the LHC.

This document is divided into four main topics: a description of SDA, an explanation of

the advantages of SDA, a description of SDA components, and a discussion of the issues and

tasks associated with adapting SDA to the LHC.

2. DESCRIPTION OF SDA

SDA is a special purpose logging system for collecting and storing data for a repeated,

multistage process. The data are collected during the process at specific times that are

relevant to the temporal evolution of the process, and are stored and indexed by these time

markers. The data acquisition is based on customizable and extensible rules. These rules

assume that the recorded process has been broken down into a repeated sequence of stages,

similar to the states and transitions of a Finite State Machine.

The SDA system consists of several distinct software components that communicate the
SDA database and with the user. These components are described in section 4.

The abstractions defined by SDA have been given names at Fermilab. These terms,

which are used in this document, are:

SDA for LHC Draft Page 4 of 16

SDA II Proposal for LHC Version 0.doc Last printed 9/18/2006 4:57:00 PM

� “Shot”—the name of the process for which data are being logged. The shot is

designated by a sequence number, which is the index into the data storage for that
instance of the process. This term is also called a “store” or a “file.”

� “Case”—the stage or mode within the shot. A case has a descriptive name and an

index number. A case occurs once and only once within a given shot. The order of

the cases is usually repeated in each shot, but this is not necessary. Nor is it

necessary for every case to the present in every shot.

� “Set”—a further temporal division within a case; the smallest time division

available. A set also is designated by a sequence number. The number of sets can

be fixed (as in the number of proton bunches that are injected, one set per injection

(if that is relevant)), or variable (for example, a new set may be generated every
ten minutes during the physics portion of a store).

� “Event”—the time marker or the condition for data collection. This can be a

hardware event generated externally by the accelerator systems or a set of

conditions that are met. An event is necessary to trigger the acquisition of a
“collection.”

� “Collection”—the list of “atoms” that are to be acquired on an event.

� “Atom”—the datum that is to be collected. Different types of atoms can be defined.

These include “device” (a scalar reading or an array of readings from a specific

accelerator component or sensor), “snapshot” (a fast chunk of data collected at a

specific machine time) and “fast-time-plot” (a series of readings from a device over

a short time period). Other types of atoms could be, for example, “image”, “movie”
or “post-mortem-data”.

Store, Case, Set and Event are the temporal abstractions within the SDA system, while

Collection and Atom are the data abstractions.

To illustrate the SDA abstractions, we present some of the processes that are recorded

by SDA at Fermilab and the names assigned to them. Some of the types of shots that are
recorded at Fermilab are:

� Collider Shots,

� Accumulator Antiproton Shots To The Tevatron,

� Recycler Antiproton Shots To The Tevatron and

� Accumulator to Recycler Antiproton Shots.

Some of the instances of these shots are linked to each other in SDA. For example,
every Collider Shot contains some sort of shot of antiprotons to the Tevatron.

Each of these shots is subdivided into cases that are repeated each time the shot

happens. For example, the main cases in a Collider Shot for the Tevatron are:

� Proton Injection porch, 1

� Proton Injection tune up, 2

� Eject Protons, 3

� Inject Protons, 4

� Antiproton Injection porch, 5

� Inject Antiprotons, 6

� Before Ramp, 8

� Acceleration, 9

� Flattop, 10

� Squeeze, 11

SDA for LHC Draft Page 5 of 16

SDA II Proposal for LHC Version 0.doc Last printed 9/18/2006 4:57:00 PM

� Initiate Collisions, 12

� Remove Halo, 13

� HEP, 14

� Pause HEP, 15

For further information on SDA and how it is implemented at Fermilab, see http://www-
bd.fnal.gov/sda and http://lhc001.fnal.gov/SDAII.

3. ADVANTAGES OF SDA

SDA has been an important part of the success of the Tevatron. It allows for the

observation of high-level trends in the accelerator complex and for a common medium and
vocabulary for discussing low-level details of the process.

Some of the advantages we have gained from SDA at Fermilab are described in this

section.

3.1 ANALYSIS OF OVERALL ACCELERATOR PERFORMANCE

SDA enables the development of general, qualitative observations about the accelerator

processes. Most results are meaningful only if they can be expressed in some qualitative way,

for example: “during fiscal year 2005 we integrated 621.848 inverse picobarns, which is much

better than our base plan and almost as good as our most optimistic plan”, or “Recycler

antiprotons work better than Accumulator antiprotons”, or “this shot was almost free from

beam-beam effects”. SDA is used to help draw conclusions like these. It helps to create
reports, to communicate between groups and to locate bottlenecks in the current system.

Since the data in SDA are collected and stored based on specific, named time markers, it
facilitates the analysis of the evolution of and communication about the shot. For example,

when someone asks the question, “What was the emittance of the 23rd proton bunch at initiate

collisions for shot number 4223?” This statement has a very specific meaning because of

SDA. Furthermore, since the same cases are repeated within each shot, accurate comparisons

can be made easily at a specific stage of the process for several shots.

SDA allows for the quick creation of summary plots, which has been a staple for the

evaluation of operations at Fermilab. A sampling of this, generated automatically from SDA
data, can be seen at http://mccrory.fnal.gov/tevatronDecayFits.

Details provided by SDA also help to solve difficult technical problems that cross group

boundaries, for example, transmission efficiencies. SDA provides common methods for

calculating and stating the details of problems and it allows people from different groups to

solve complicated problems together.

3.2 ERROR/FAILURE ANALYSIS OF THE ACCELERATOR

Error and failure analysis of shots are enhanced by SDA in several ways:

� The Store Checker issues alerts about failures or problem with SDA data, even

when everything seems to be normal. For example, it can mark a negative

emittance as an error.

� Analysis of data from the SDA Viewer allows the investigator to understand a failure
quickly by providing a detailed view of the evolution of that system.

� Special error analysis shots (that is, a special collection triggered by a specific

error) provides information about specific, predefined failures. A particular benefit

SDA for LHC Draft Page 6 of 16

SDA II Proposal for LHC Version 0.doc Last printed 9/18/2006 4:57:00 PM

of this approach could be to provide meaningful structure to a post-mortem data
dump, in parallel to a more general post-mortem system.

� Computational tables; see below.

3.3 COMPUTATIONAL/SUMMARY TABLES

Computational/summary tables, derived from SDA, have proven to be an effective and

popular way to use SDA data. These tables, usually provided as a spreadsheet that can be

used with programs like Excel or Java Analysis Studio (JAS), allow anyone to view quickly the

status and the details of the process. These tables contain two types of data: summary data

taken directly from SDA (e.g., the initial luminosity at an interaction region), and data

computed from SDA data (e.g., luminosity lifetime). One prominent use of these tables is to

create summary plots that are distributed widely: luminosity plots, integrated luminosity plots,
antiproton intensity plots and proton intensity plots.

Organization of SDA data into tables allows a convenient way to access data quickly and

meaningfully. When the validity of the tables is accepted, these tables become the basis on

which performance is discussed. Since SDA is controlled and maintained by scientists and
engineers who are not involved directly with the beam sensors, these people are the liaisons

between the people who generate the signals and the people who use them. Since the

contents of these tables can be regenerated easily, the specifics of a calculations can change.

The most notable of the time-dependent calculations at Fermilab has been the emittances in

the Tevatron—it has been and continues to be difficult to agree on the beta functions at the
flying wires!

The table that has had the most wide-spread use during the Tevatron Collider Run has

been the “Super Table.” This table has one row per collider shot and is available in many

formats: Excel, HTML, AIDA and ASCII Comma Separated Values formats. Different columns

represent summary information about different properties of accelerator complex. This figure

shows a screen shot of the HTML version of the Super Table.

Figure 1. A Screen Shot of the Super Table

SDA for LHC Draft Page 7 of 16

SDA II Proposal for LHC Version 0.doc Last printed 9/18/2006 4:57:00 PM

The Super Table currently has 245 columns and thousands of rows (one row per collider

store). Most people use the Excel version of the Super Table, but the AIDA version, coupled
with JAS, is also very popular.

The Super Table allows for:

� Quick, qualitative understanding of overall performance: which system has

problems and where performance can be improved. Having the Super Table

available in Excel format has been particularly useful.

� Detailing how the accelerator complex performed during a good shot.

� Creating detailed performance plots like initial luminosity and integrated luminosity

versus time, or correlation plots, like the emittance of the protons versus the

luminosity lifetime.

� Creating cells that are predictions, based on beam measurements. For example,

one interesting cell is the luminosity of the Tevatron as calculated from accelerator

measurements; we compare this to the luminosity as measured by the experiments
to give us information on the beta functions at the experiments.

The data from the Super Table form the basis for reports Fermilab sends to its funding

agency, the Department of Energy. DoE officers have a direct link to the automatically

generated performance plots and they check our work daily. This enhancement of

communications to our funding agency has been important on a variety of levels, including the
establishment of trust to this oversight organization.

More information on the Super Table, including the current version, can be viewed at

http://www-bd.fnal.gov/sda/supertable.

There are a number of other computational tables that are used at Fermilab. Several of

these tables are automatically included into our “shot scrapbook” – an automatically

generated, specialized log book on each shot, created at the request of the operators and
written automatically by SDA. Those tables include:

� Recomputed Emittances table,

� Recomputed Intensities table,

� Intensities by transfer 1 (Accumulator view) and Intensities by transfer 2

(Recycler view),

� Emittances by transfer for “Accumulator to Recycler Transfers”.

These tables are popular because they represent a common view of several groups to

some particular problem or set of problems. (It is interesting to note that the last of these

tables, “Accumulator to Recycler Transfers,” has been controversial because, at least initially,

these two groups disagreed with virtually every number in that table. As time has progressed,

they have developed a common language and can now agree on most of these numbers.)

Every table is accompanied by a complete, automatically generated description of the

computational algorithm that has been used—one can trace how each table cell has been

computed down to the elementary device readings. This increases the credibility of the system

and decreases the number of calls to developers with question like “how did you come up with
these results?”

It is worth reiterating the sociological role of these tables as they pertain to accelerator

performance. These tables provide a common view of the data for different working groups

and often serve as a basis for a common language among these groups. In this way SDA has a

noticeable influence by improving communication, and thereby contributing to better
performance.

SDA for LHC Draft Page 8 of 16

SDA II Proposal for LHC Version 0.doc Last printed 9/18/2006 4:57:00 PM

4. SDA COMPONENTS

We present here a list of the pieces of the current SDA implementation.

The SDA server and database server run on a PC running Scientific Linux. The DAQ

server is implemented in Java 1.5. The name of the class package is gov.fnal.sda. The data

acquisition is based on the DAE/SCF technology developed at Fermilab. Data flow within SDA

is encapsulated in XML documents. The database chosen for this version is Berkeley DB XML,

a native XML database built on top of Berkeley DB. It is imagined that the entire SDA system
at LHC will be contained within one PC, provide by Fermilab, on the Technical Network.

The distinct components of SDA are:

� The data acquisition for the local control system.

� The SDA Database, for storing the collected data.

� The SDA Viewer, for browsing the data in the database.

� The SDA Editor, for setting up the data acquisition.

� A Report Editor, for creating automatic summaries of the data.

� The Store Checker, for verifying that the data being collected pass certain simple
tests.

� XML Schema for data flow, for the structure of the database and for the returned

data.

� An API, for allowing programmatic access to the SDA database. The high-level APIs

in JavaDoc format, in the working version currently at Fermilab, can be found at

http://lhc001.fnal.gov/SDAII/api/doc.

� A scripting language, built on top of the API.

� Summary and Computational Tables, derived from the SDA data.

� An AIDA/JAS interface to the SDA data.

For example, here is a screen shot of the SDA Structure editor.

SDA for LHC Draft Page 9 of 16

SDA II Proposal for LHC Version 0.doc Last printed 9/18/2006 4:57:00 PM

Figure 2. Screen shot of the SDA Structure Editor.

And here is a screen shot of the SDA Viewer, looking at data from the initial part of a

recent store.

Figure 3. Screen shot of the SDA Viewer

SDA for LHC Draft Page 10 of 16

SDA II Proposal for LHC Version 0.doc Last printed 9/18/2006 4:57:00 PM

5. ADAPTING SDA FOR LHC

To adapt SDA for the LHC, several design choices need to be made. Possible preliminary

design choices are presented here.

5.1 DESIGN ISSUES AND CHOICES

At this stage of the development of SDA, some design assumptions have been made.

This section presents the issues we are facing at this time—some of them we have solutions

for, and some we do not.

5.1.1 Suggested Design Choices

All the code will be written using Plugins to maintain the generality of the core parts of

SDA. In particular this means that, (1) interfaces that require only simple types will be

designed so that the implementing classes do not need to know about the other parts of the
system, and (2) there will be an external mechanism to register the plugin.

Data flow: The data sent to the SDA database is encapsulated in an XML document. The

data retrieved from the database is returned as an XML document.

We imagine that SDA data acquisition will be done by a stand-alone PC on the Technical

Network at CERN. This PC also can be the database server, but this duty may be split out if

throughput becomes an issue, or if it is desired to use a relational database instead of the XML
database.

The SDA API is implemented in a client/server manner. The server side accesses the

database and returns the results through a Java Server Pages (JSP) mechanism. This JSP

server complies with the Java Servlet Container specification, currently at 2.5. Nothing on this

server is specific to any JSP engine (like Tomcat or Jetty). The clients access the JSP server
via XML over HTTP through a mechanism like SOAP, XML-RPC or plain XML.

Sleepy Cat Software’s Berkeley DB XML is used as the data storage for the first version

of the system. DB XML is being used because one of the more fragile parts of the current

version of SDA has been the XML/relational DB interface. The ability to switch to a relational
DB is available through plugins.

AJAX has been used for the first version of the support software. The applications may

be written in Java at a later date, if this is desired.

Beanshell is the first scripting language for SDA. More scripting languages will be added
with the release of Java 6.

5.1.2 Design Considerations

One of the first things that need to be determined is the time structure of the LHC

cycles. This structure can change over time (with experience, or as the operation of the

accelerator changes). We are interested in helping the LHC with these definitions, since we
believe that we have some relevant experience with the Tevatron.

Code Management: The code that represents SDA will be managed in the conventional

manner with a tool like CVS. The code that represents SDA should be kept at CERN, but we
will need to access it from Fermilab.

What processes will be recorded by SDA? Any repeated process in the entire LHC

complex, including the injectors, could be recorded by SDA. These processes need to be

identified.

SDA for LHC Draft Page 11 of 16

SDA II Proposal for LHC Version 0.doc Last printed 9/18/2006 4:57:00 PM

5.2 “TO DO” LIST FOR SDA

Several tasks for implementing SDA have been identified. Here are some of them.

� A requirements document.

� A design document.

� The data acquisition. It seems prudent to have a small team of people from

Fermilab and from CERN (maybe 1 FTE a month or so spread over 2 people from

each lab) to write the data acquisition plugins. Experience with implementing the
Fermilab DAQ plugin will be relevant.

� The SDA Database. While the version we are preparing uses the Berkeley DB XML

from Oracle and Sleepy Cat Software, it has been expressed that having a unique,

operationally significant database may be inappropriate. Since the data flow is

defined by and implemented in XML, it should be straight forward to translate this
flow into a relational database.

� Atom definitions and implementations. The data atoms necessary to contain LHC

data need to be designed and implemented.

(This list is certainly going to grow!)

6. SUMMARY

SDA collects and organizes shot data around the temporal flow of the shot, and thereby

enhances data analysis and trouble shooting. We have identified advantages of SDA, listed

the components, and suggested possible tasks and design issues to implement SDA for the

LHC. Some of these advantages are:

• SDA is a data acquisition system and a database that collects and stores data on

time markers that are relevant to the process being followed.

• It is implemented modularly so that the various pieces of the system do not need to

understand very much about the other parts.

• It has several widely useable tools for collecting, examining and analyzing the data
and for allowing interested people to craft the system to best suit their needs.

• SDA has been a resounding success at Fermilab and has been a critical aspect of

the success of the Tevatron program.

We look forward to discussions about SDA and welcome interaction about and

modifications to this proposal. A possible next step would be to develop a requirements

document for implementing SDA for the LHC.

SDA for LHC Draft Page 12 of 16

SDA II Proposal for LHC Version 0.doc Last printed 9/18/2006 4:57:00 PM

REFERENCES

“Portable SDA (Sequenced Data Acquisition) With a Native XML Database”, T. Bolshakov, E.

McCrory, EPAC ’06, http://accelconf.web.cern.ch/AccelConf/e06/Pre-

Press/THPCH128.pdf. A presentation of this work can be seen at
http://lhc001.fnal.gov/SDAII/CERN_presentation.ppt

Fermilab SDA: http://www-bd.fnal.gov/sda

Fermilab Super Table: http://www-bd.fnal.gov/sda/supertable

SDA-II: http://lhc001.fnal.gov/SDAII; SDA-II API: http://lhc001.fnal.gov/SDAII/api/doc.

AJAX: Asynchronous JavaScript and XML. A programming architecture used extensively by

Google for live web pages. See http://en.wikipedia.org/wiki/Ajax_%28programming%29.

AIDA: Abstract Interfaces for Data Analysis, http://aida.freehep.org. From the web site, “The

goals of the AIDA project are to define abstract interfaces for common physics analysis

objects, such as histograms, ntuples, fitters, IO, etc.”

JAS: Java Analysis Studio, http://jas.freehep.org. From the web site, “A general purpose,

open-source, data analysis tool.”

Beanshell: A scripting language that implements syntax essentially identical to Java and runs

within the Java Virtual Machine. See http://en.wikipedia.org/wiki/Beanshell

Sleep Cat Berkeley DB XML: A direct implementation of an XML database. See

http://www.sleepycat.com/products/bdbxml.html. Sleepy Cat has been purchased by
Oracle.

GLOSSARY

Shot The name for the entire process that is being recorded. This term is also
called “store” or “file.”

Case The stage within the shot. A case occurs once and only once within any

given shot. The order of the cases is usually repeated, but this is not necessary. Nor is it
necessary for every case to the present in every shot.

Set A further temporal division within a case; the smallest time division

available. The number of sets can be fixed (as in the number of proton bunches that are

injected, one set per injection (if that is relevant)), or variable (for example, a new set may be
generated every ten minutes during the physics portion of a store).

Collection The list of “atoms” that are to be collected at the outset of a case or a set.

Atom The datum that is to be collected. It is up to the facility to define the types

of atoms that are relevant. Plugins are used to control the handling of an atom – its
collection, representation etc. Also called a “variable.”

Event The time or the condition for data collection.

Plugin A programming style that separates disparate aspects of a complex

computer program system. They are widely used in modern web browsers, and we borrow
that term from there. See http://en.wikipedia.org/wiki/Plugin.

SDA for LHC Draft Page 13 of 16

SDA II Proposal for LHC Version 0.doc Last printed 9/18/2006 4:57:00 PM

APPENDIX 1, CONTACT INFORMATION

Timofei Bolshakov, Fermilab Accelerator Division, Accelerator Controls, 630-840-8034,

tbolsh@fnal.gov.

Suzanne Gysin, Fermilab Computing Division, Accelerator Modeling R&D, 630-840-8334,

gysin@fnal.gov.

Elliott McCrory, Fermilab Accelerator Division Headquarters, Group Leader, 630-840-4808,

mccrory@fnal.gov

Dennis Nicklaus, Fermilab Accelerator Division, Accelerator Controls, 630-840-6410,

nicklaus@fnal.gov.

APPENDIX 2, SDA DATA API

public class ApiBase {

 // general utility methods

 static public String resolveOwnerName(int id);

 static public int resolveOwnerId(String name);

 static public String resolveCaseName(int owner, int caseAlias);

 static public int resolveCaseAlias(int owner, String name);

 // data classes

 public static class Store{

 public int getFileAlias();

 public int getOwnerId();

 public String getOwnerName();

 public Case getCase(int caseAlias);

 }

 public static class Case{

 public int getCaseAlias();

 public String getCaseName() ;

 public int getOwner();

 public void bind(Store str);

 public Store getStore();

 public void addVariable(Variable var);

 }

 public static class Variable{

 public String getName();

 public Case getCase();

 public boolean isMultiSet(); // trigger data collection

 public VariableData getData(); // trigger data collection

 public VariableData getData(int set); // trigger data collection

 public int numSets();

 public int lastSet();

SDA for LHC Draft Page 14 of 16

SDA II Proposal for LHC Version 0.doc Last printed 9/18/2006 4:57:00 PM

 public int firstSet();

 public boolean isEmpty();

 }

 // data interface

 public static interface VariableData {

 public Object getObjectData();

 public boolean is(String type);

 public long getTimestamp();

 public double op(String whatOp);

 public boolean isError();

 public String getErrorShortDescription();

 public String getErrorLongDescription();

}

 // factory methods

 public static Store getStore(String ownerName, int store)l

 public static Store getStore(int owner, int store);

 public static Store getStore(int store);

 public static Store getStore(String store);

 public static Case getCase(String owner, String caseName);

 public static Case getCase(int owner, int store, int caseAlias);

 public static Case getCase(String owner, int store, String caseName);

 public static Variable getVariable(Case _case, String type, String name, String set);

 public static Variable getVariable(Case _case, String name, String set);

 public static Variable getVariable(int owner, int store, int caseAlias, String name,
String set);

 public static Variable getVariable(String owner, int store, String caseName, String
name, String set);

 public static Variable getAcnetVariable(Case _case, String name);

 public static Variable getAcnetVariable(Case _case, String name, String set);

 public static Variable getAcnetVariable(String owner, int store, String caseName, String
name, String set);

 // cache control

 public static void clear(int store);

 public static void clearAll();

 // plugin interface

 public static abstract class AtomConverter {

 public Variable getVariable(Case _case, String name, String set);

 public abstract Variable getVariable(Case _case, String name, String set,
Map parameters);

 public abstract VariableData produceVariableData(Variable v, String atomContent,
long ts, Map <String, String>atomAttributes);

 }

 public static void registerAtomConverter(String type, AtomConverter ac);

 public static AtomConverter getAtomConverter(String type);

}

SDA for LHC Draft Page 15 of 16

SDA II Proposal for LHC Version 0.doc Last printed 9/18/2006 4:57:00 PM

APPENDIX 3, XML SCHEMA

The XML for the data structure is as follows:

<shot type='1' alias='4008' index='8672' ...>

...

 <case name='HEP' alias='14' ...>

...

 <set alias='25' collection_index='425' ...>

...

 <atom name='C:B0ILUM' time='...'>

... data ...

 </atom>

...

 </set>

...

 </case>

</shot>

The structure of the SDA data collection XML specification is as follows.

<structure>

<owner id='{0,1,2,3}' name='{ColliderShot, ...}' test='B'
current='true'>

 <case alias='N' name='Name' mult-collection='B' mult-sets='B' arm1='E'
arm2='E' disarm1='E' disarm2='E' set1='E' set2='E' end1='E'
end2='E'>

 <atom name='name1' type='{device, snapshot, fast-time-plot, ...}'
desc='description' request='device-str' event='Event'/>

 ...

 </case>

 ...

 </owner>

 ...

</structure>

Modifications to this structure will be preserved with this sort of XML schema:

 <modifications>

 <re-export from='string-source' timestamp='L' by='user'/>

 <inserted timestamp='L' by='user'>

 <path>owner/case/</path>

 <atom>

 ...

 </atom>

 </inserted>

 <removed timestamp='L' by='user'>

 <path>owner/case/</path>

SDA for LHC Draft Page 16 of 16

SDA II Proposal for LHC Version 0.doc Last printed 9/18/2006 4:57:00 PM

 <atom>

 ...

 </atom>

 </removed>

 <changed timestamp='L' by='user'>

 <path>owner/case/...</path>

 <old-value> ... </old-value>

 <new-value> ... </new-value>

 </changed>

 </modifications>

