Comments on middleware meeting 7th February 2002 – Niall Stapley

* I asked Stephen Page whether there was an API/ABI underlying the dumb

terminal serial input at the actual power converter machines themselves,

and whether they could use it. He had not considered this and was not

sure if it was possible. This may help by being able to send data

structures direct to the machines without marshalling and demarshalling

strings through CORBA (definitely a pointless exercise). However the

gateways would still need to demarshal from CORBA to the power

converters native protocol anyway.

* I believe that Quentin has a _very_ valid point that CORBA wrapped by

get'n'set hides the benefits too. CORBA is not exactly lightweight, but

that is because the ORB is designed to communicate _any_ described

functions and data with almost any system regardless of OS, network or

language, do dynamic (run-time) discovery of interface implementations

and invoke them. It also contains a POA which controls policies for

matching CORBA object lifespans to servant lifecycles and threading,

creation of object_ids and more. These features _are_ CORBA and

contribute to the large binaries. If these features are not used then

their code paths will never be executed, so Quentin need not worry about

checking them. But using CORBA in this way is like using a ferry as a

speedboat.

* With regard to size, I had a talk with Nikoli afterwards about size

reduction as I thought that it should be possible to just have an IIOP

marshalling engine (or even just use CDR) and one IOR matching a C

function per machine. Nikoli pointed out that by removing the rest of

the ORB like this removes the idea of using a product and a standard, and

that memory is cheap anyway. BI on the other hand has expensive

nonstandard memory and would probably not want to buy the the 32MB

modules that Nikoli suggested.

Narrow vs wide interfaces

I now understand this argument and am in favour of wide interfaces because:

1. Narrow interfaces only hide the "real" interfaces somewhere else.

What do you actually get'n'set and how do you find this out?.

2.Narrow interfaces avoid all the compile time checking like typesafety

that the interface (CORBA IDL) level offers, thus hiding bugs too.

3. Wide interfaces can clearly describe and make explicit the available

functionality and (for CORBA) come with introspection, security for free.

4. Wide interfaces dont force one paradigm (the get'n'set) onto users

but actually allow them to describe exactly in a codeable form how we

interact with them or them with us.

5. Wide interfaces can use OO advantages such as encapsulation and

inheritance encouraging re-use of coded components and common data

structures(eg. time).

6. Narrow interfaces are forced to use CORBA::Any because datatypes are

not known (or checked) at compile time. Another datatype called TypeCode

is actually created and used to contain the original datatype along with

its metadata. It is actually TypeCode that is then marshalled and sent

over the wire. TypeCode is then unmarshalled by the receiver (step 1)

and used to dynamically reconstruct the unknown type (step 2). Compiled

datatypes do not need the second step and are marshalled directly into

their respective types. Marshalling an any is slower and requires much

more processing.

7. Wide interfaces allow coarse-grained (network friendly) interfaces to

move larger datasets atomically across the network rather than many

setter calls. This means faster and more atomic data transfer.

8. Wide interfaces can be as flexible as narrow ones. A client can

retrieve an interface, introspect it and invoke a function call on it at

runtime.

9. Wide interfaces are fragile and subject to change and therefore fail

if clients call functions incorrectly. Good. This is actually correct

determinitistic behaviour, if it does not work properly then it should

simply not work at all. This causes human communication as to why and

problems are confronted directly. When changes happen under narrow

interfaces undeterministic behaviour occurs, there is no policy. Systems

 whose interfaces are not updated with clients fail quietly with

symptoms appearing either as runtime bugs or more dangerously going

undetected for a while until SOMETHING BAD HAPPENS(tm).

As a Legoland example of narrow vs wide here is probably something close

to the current CORBA IDL interface underneath that java/c++ wrapper...

module sl_controls {

 interface control {

 any get (in string property);

 void set (in string property,

 in any data);

 // for monitoring

 any blocking_get (in string property);

 };

};

...and in a document somewhere we would have to define our "real"

interface with our own change policy...

 Alarm Properties Document. 02/02/2002

This document is subject to change, please ensure you have the latest

copy (which is always kept in this directory, check back every once in a

while) and that your alarm generating equipment adheres to this latest

standard. If not you may find that your alarms cause undefined behaviour

within our system and you may not see your alarms at all.

Originally we had a setter for each property of an alarm and then a

setter for an "alarmConstructed" property to "send" the alarm. This

proved difficult to use as it took many network calls to set up an

alarm, and with so many alarms our server is having difficulty. We would

rather that you are able to construct and send us one alarm quickly and

atomically. To simplyfy both ends and reduce the problems we have gone

back to strings.

For any alarm A please send us a string containing a colon deliminated

list of attributes, for example...

alarms.set (A, YOUR_ALARM_STRING);

...where char[] contains:

FaultFamily:FaultMember:FaultCode:FaultDescriptor:userTExt:

PRiority:Integer:String:TimeStamps

By the way, please ensure that this string fits into the following

datatypes as we convert:

FF,FM,FD,TE into char[8],char[8],char[256],char[256] respectively.

I into integer (beware our new CAS2 will have 64-bit words).

PR is not currently used, please do not populate this field.

TS more than one should be deliminated by a comma (,) as these are read

into an array of longs (see machine architecture note above)

representing milliseconds since 1 Jan 1970.

FD is an emun of N(ew) or T(erminate) or B(ackup). Please be careful as

anything else throws a runt-time error which of course we cannot notify

you of unless we reject the whole string and you will not know why.

...and now a wide alarm CORBA IDL interface definition replacing our

document and the narrow interface...

#pragma prefix "cern.sl"

module Alarms

{

 exception AlarmNotFoundException {};

 exception MessageNotFoundException {};

 typedef long TimeInMillis; // milliseconds since 00:00 1 Jan 1970

 enum StateEnum {NEW, TERMINATE, BACKUP};

 enum PriorityEnum {ZERO, ONE, TWO, THREE};

 struct AlarmId

 {

 string fault_family;

 string fault_member;

 short fault_code;

 };

 struct Message

 {

 AlarmId id_triplet;

 StateEnum fault_descriptor;

 string user_text;

 PriorityEnum priority;

 unsigned long msg_integer;

 string msg_string;

 sequence<TimeInMillis> timestamps;

 };

 interface Gateway

 {

 #pragma version Alarms::Gateway 1.1

 void send (in Message msg)

 raises (AlarmNotFoundException);

 StateEnum checkAlarmState (in AlarmId al_id)

 raises (AlarmNotFoundException);

 };

 interface Archive

 {

 #pragma version Alarms::Archive 1.1

 typedef sequence<Message> MessageSeq;

 MessageSeq getAllMessagesFrom (in TimeInMillis earlier_time)

 raises (MessageNotFoundException);

 MessageSeq getAllMessagesBetween (in TimeInMillis start_time,

 in TimeInMillis end_time)

 raises (MessageNotFoundException);

 };

};

...and after I have implemented this interface, we have an

introspective, self-describing, typesafe interface to the alarm system

available across the network to over 15 languages. Lets try Java...

import org.omg.CosNaming.*;

import cern.sl.controls.alarms.*;

class SendMyAlarm {

 /**

 * Send one alarm then exit.

 */

 public static void main (String [] args) {

 org.omg.CORBA.Object temp_corba_obj;

 // get our object request broker

 org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init (args, null);

 // find the naming service

 temp_corba_obj =

 orb.resolve_initial_references ("NameService");

 NamingContext naming_context =

 NamingContextHelper.narrow (temp_corba_obj);

 // this describes a path down a tree like a directory name

 NameComponent [] name_components = {

 new NameComponent ("Gateway", ""),

 new NameComponent ("Alarms", ""),

 new NameComponent ("Controls", ""),

 new NameComponent ("SL", "")

 };

 // read our returned object reference into the temp reference

 temp_corba_obj = naming_context.resolve (name_components);

 // we now get our reference to the alarms gateway

 Gateway alarms_gateway = GatewayHelper.narrow (temp_corba_obj);

 // and start using it

 // create a new message

 short myFaultCode = 23;

 AlarmId alarm_id = new AlarmId ("myFaultFamily",

 "myFaultMember",

 myFaultCode);

 Message msg = new Message (alarm_id,

 StateEnum.NEW,

 "my user text",

 PriorityEnum.ZERO,

 null, // no integer

 null, // no string

 new Milliseconds (new Date ()));

 try {

 // send message to the gateway

 // this should take about 10msecs

 alarms_gateway.send (msg);

 // and check our current state from the gateway

 StateEnum alarm_state =

 alarms_gateway.checkAlarmState (alarm_id);

 System.out.println ("The gateway says our current state is"

 + alarm_state.toString ());

 } catch (AlarmNotFoundException anfe) {

 System.out.println ("The gateaway received our alarm "

 + "but did not recognise the AlarmId");

 } catch (Exception e) {

 System.out.println ("A Corba error occurred: "

 + e);

 }

 } // main

} // class
